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Abstract. A one-dimensional lattice-gas model with order preservation is considered where the 
occupation probabilities of sites correspond to Bose statistics as a consequence of the prescribed 
dynamics. The master equation for the particlecluster dynamics at the sites is formulated. 
The corresponding continuum nonlinear diffusion equation is derived for [he space- and time- 
dependent concentration fluctuations. The equation can be regarded, in the presence of n drift 
force, as the Burgers equation when terms irrelevant in the sense of renormalization-group 
ideas are neglected. Collective centreof-mass and tagged-particle diffusion are investigated 
by numerical simulatiods and the results agree with the analytical derivations. Subdiffusive 
behaviour of the mean-square displacement of tagged pm'cles and normal collective and centre- 
of-mass diffusion att observed when no bias is present. The dispersion of the c e n t r e 4  
mass displacement exhibits superdiffusive behaviour in the case of mean drift of the particles. 
Discrepancies of about 20% between the numerically determined superdiffusion coefficients and 
the predictions of the modecoupling theory are found and discussed. 

1. Introduction 

In this paper we study a non-interacting one-dimensional lattice-gas model with an order 
preservation of particles where multiple occupancy of the sites is not excluded. The 
dynamics of this model are constructed in such a way that the equilibrium occupation 
probabilities of the sites are given by the expression for Bose particles [I]. The iexdusion 
of particle permutations within this onedimensional model then leads to non-trivial slowed 
diffusion processes. 

There are several reasons why this model has been studied. First, this model exhibits 
very interesting diffusional behaviour-besides normal collective diffusion in the absence 
of a bias, anomalous diffusion appears when a uniform bias field is applied, as will be 
demonstrated below. In this model, the diffusion coefficients and the drift velocities become 
particle-concentration;dependent. The non-trivial concentration dependence of the collective 
diffusion coefficient is in contrast to the corresponding result for site-exclusion lattice-gas 
models. Second, the model is related to the 'repton' model for polymer diffusion [2]  (which 
is a discretized version of the reptation model), where several segments can be accumulated 
at one site. Third, the model may have a direct application to the transport of particles 
in disordered (e.g. porous) materials ([3] and references therein) where several particles 
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may occupy the same region and when release of the particles is through a one-particle 
bottleneck. 

In section 2 we introduce the model by its master equation and describe a special 
implementation for numerical simulations. Section 3 dcscribes the derivation of a Burgers 
equation for the model and its consequences. In section 4 the diffusion of particles in this 
model is studied when no bias field is present and in section 5 the extension to diffusion 
under the influence of a bias field is made. Section 6 contains concluding remarks. 

2. The master equation of the model 

We consider a linear chain with sites numbered by I and with periodic boundary conditions. 
Particles are randomly occupying the sites of the chain; multiple occupancy of the sites 
is allowed. At each lattice site along the chain an arbitrary number of particles can be 
piled up, entering and leaving only at the bottom and the top of the piles, then respectively 
going either to the left or right nearest-neighbour piles with certain probabilities (cf figure 1). 
Since particles below the top and above the bottom of the piles are immobilized the resulting 
diffusion process will be slowed down the higher the piles are. 
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Figure 1. Schematic represenhtion of the one-dimensional bosonic lattice-gas model with order 
preservation. The possible transitions of the cluster at site 1 to neighbour sites me indicated. 

Let Pn(l, f) be the probability that site 1 is occupied by n particles at time f and let 
Pn(I, l', t )  be the joint probability that site l is occupied by n particles and that site I' is 
occupied by at least one particle, at time t .  We postulate the following master equation for 
P,(I,f) ( n =  l , Z ,  ... ): 
ap,(i, r )  - =r-p~-l(l,~+i,r)+r~~~-l(~,i-~,t)+(r~+r~)p~+l(~,r) 

at  
-r+Pn(i,/ + i,t) -~r+pn(i , I  - i , t )  - (r- + r 4 ) p n ( i , t ) .  (1) 

The master equation (1) describes essentially the dynamics of particle clusters at the sites 
1 where the clusters can grow or shrink by a single-particle transfer. Here r, is the 
transition rate of a particle in the direction of increasing I and r+ the transition rate when I 
is decreasing. The equation for the probability of no occupancy Po(l, f) is slightly simpler 
and can be obtained from (I )  by summation over n, 

(2) -- apo(i, t) -(r~+r~)pl(~,r)-r-~o(i,l+i,t)-r~~o(i,i-i,t). 
at 

The probabilities obey the following normalization conditions: 
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and 

(4) 
m c P"(1', I ,  t )  = P(1, t).= 1 - Po(1, t) 
"=O 

where P ( l ,  t )  denotes the probability that at least one particle is present at site 1 at time t. 
We now point out the difference between the model considered here and the standard 

model of independently diffusing particles. Let us consider the last term of (1). It describes 
shrinking of the cluster of n particles at site 1 by a single-particle transition to the left or 
to the right. The summary rate of departing of a particle from this cluster is r+ + r,, 
independent of the number n > O.of particles present  in it. This fact makes the model 
different from an ensemble of hopping independent 'Boltzmann' particles, where the rate of 
transitions of any one of the individual particles to the neighbour sites would be + r+, 
and thus the summary rate for cluster decay.would be n(r- + r,). The characteristic 
feature described above can be identified in the other terms as well. 

We are interested in the concentration of particles at site 1 at time r. It is defined by 

The master equation for c(l ,  t )  is derived from (1) and (2) by multiplying by n and 
subsequent summation using conditions (3) and (4). We have 

(6) 

with P(1, t )  defined in (4). Equation (6) demonsfrates again that the rate of change of 
concentration at one site does not depend on the concentrations c(1', t ) .  1' = 1 ,  I f  1, of this 
and the neighbouring sites, rather a is determined by the probabilities P(l', t ) .  

The stationary solution of (1) and (2) is easily obtained when the factorization 
Pn(l,l') = P,(l)[l - Po(l')] is assumed. By iterative solution of the equations we find 
a distribution 

~- acv, t )  -r,~(i+i,t)+r,~([-i,t)-(r,+r,)~(1,t) 
at 

PJ!(l) = PO(0Il - PO(W n = 0 , 1 , 2  ,.... (7) 
This solution satisfies the normalization condition (3). Since the stationary solution of (1) 
and (2) is unique, the factorization has been justified. Equation (7) also follows from the 
combinatorial consideration of distributing Np indistinguishable 'Bose' particles over N 
sites. Thus we have shown the equivalence of a classical lattice gas with order preservation 
and the quantum-mechanical lattice gas. 

From equation (7) follows that, using (5), the probability P(1) of having at least one 
particle present at site 1 is 

The stationary occupation probabilities are then given by 

P"(1) = - - 
1 + c ( l )  [ 1 + c(1) 1'. 

Detailed balance conditions for the equilibrium states are easily deduced from (1) and 
(2) in the form 

r-+pn+l(o = r+p,,(ou - p0(i + I)] (10) 
for any pair of neighbouring sites 1 and I + 1. 
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The results described so far are valid for homogeneous systems with c ( l )  = F, as 
well as for disordered systems with spatially varying transition rates and hence space- 
dependent c(1). The latter case will not be considered further in this paper. A spatially 
inhomogeneous system with r-, # r+ and reflecting boundary conditions at one end has 
been considered in [l]. There a Base distribution for c(1) was obtained. Analogous models 
of fermionic lattice gases were studied in [4]. 

We now describe the actual implementation of the kinetic model for particle transport, 
as defined by the master equation (I), in a direct numerical simulation. We use periodic 
boundary conditions in this paper. We prepare an average, homogeneous concentration 
Z of particles in our system both in equilibrium and in the stationary state where we 
use (8) and (9) for N p  particles distributed over N sites with c( l )  = C = N , / N .  The 
process of putting particles on the sites of the lattice with a given average concentration 
corresponds to the use of the grand-canonical ensemble for the preparation. Consequently, 
the actual concentrations deviate slightly (3% or less) from the nominal concentrations, 
which are always indicated. Random selection of single particles for attempted transitions 
to neighbouring sites is equivalent to a Poisson process when Np > 1 [5].  As discussed 
above, the transition rates describe cluster growth or shrinkage; a particle in a cluster of size 
n should then have a rate r-,/n, or r + / n ,  respectively. for transition to a neighbouring 
site. An alternative way of implementing the model consists of numbering the particles 
along the line and in the clusters as. shown .in figure 1, and preserving the order of the 
particles during the transitions. Explicitly, a particle at the bottom of a cluster can make 
a transition with rate r, to the top of the left cluster, a particle on the top of the cluster 
can perform a transition with rate f,, which then leads to the bottom of the right cluster. 
No other transitions are allowed. As long as we can disregard the enumeration in the study 
of quantities such as the collective diffusion coefficient, we will obtain the same results 
as with the original dynamics. The algorithm outlined above is much more convenient for 
numerical implementation since the particles are easily enumerated. Further, we can now 
study the diffusion of tagged particles; this will provide additional interesting information. 

The version of our model with the preservation of particle order is similar to the so- 
called repton model of polymer dynamics [2]. However, in our model zero occupancy of 
sites can also occur. This has to be excluded in the repton model, because breaking off and 
gluing processes of the segments of the polymer are not allowed. 

3. Derivation of the Burgers equation 

Equation (6) of the preceding section connects the time derivative of the local density of 
particles at a site to the probability of finding particles at this or neighbouring sites, i.e. 
the first to the zeroth moment. Hence it is not a closed equation. In this section we shall 
introduce a closed equation for the local concentration: at the same time we shall consider 
the system on a more coarse-grained scale by using a continuum description. We assume, 
as our basic hypothesis, the following nonlinear relation between P([, t )  and c(r, t ) :  

This is a generalization of (8) for non-equilibrium situations, and we expect it to be valid 
at least close to equilibrium or close to stationary states. 
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By expanding P(1. t )  in derivatives of c (x ,  t )  up to second order we obtain directly 
from (6) 

where Do = (r, + r+)/2 and uo = r, - r,. The lattice constant has been set to 
unity; moreover, in our numerical calculations the summary transition rate was taken as 
r+ + r, = 1. 

Equation (12) has the form of a continuity equation and the density current is 

i.e. the density current is the sum of a dimive and a convective term, It contains the 
coefficient of collective or chemical diffusion, 

and the mean particle velocity 

Note that the diffusion~coefficietit and the mean particle velocity depend on the instantaneous 
values of the concentrations. Again, in equilibrium the static solution of (12) is given by 
Bose distribution. 

Equations (12) and (13) are consequences of the assumption (1 1). However, the validity 
of this assumption must be examined. Equation (12) (the generalized Burgers equation [6]) 
is transformed below to a form more proper for further applications. 

Since we study diffusion near to equilibrium as well as near the stationary state, we 
split the concentration into c(x, t )  ='? +Sc(x, t ) ,  and expand (12) and (13) around C up to 
quadratic order to obtain 

The'first line of (16) represents the linear approximation which is expected to cover an 
intermediate range of times. The second line contains the convective and,another nonlinear 
term. Usually, the first term on the right-hand side of (16) is removed by a Galilei 
transformation to the co-moving. frame. The Monte Carlo simulations are carried out in 
a fixed frame of reference relative to which the particles move. 

In the linear part of the equation we can identify 

as a collective or chemical diffusion coefficient, and 

as a drift velocity of concentration fluctuations. The  meaning of this velocity will 
be discussed further below. Here, the collective diffusion coefficient depends on 
concentration, whereas for the non-interacting fennronic latticegas [7-101 it is independent 
of concentration both in the presence and absence of a bias. 
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As discussed below, the nonlinearities resulting from the expansion of the diffusive term 
in (12) and (13) are irrelevant compared to the convective term. Hence, the fourth term in 
(16) can be neglected and we obtain the well known Burgers equation [6] with coefficients 
that are non-trivially dependent on average particle concentration. 

In this derivation we did not but we could trace fluctuations. As usual in fluctuating 
hydrodynamics, we complete the Burgers equation by adding a Langevin force, which 
conserves particle number. The resulting model has been studied during the last decade 
in great detail (see e.g. [6,9,1 I] and references therein). For ug # 0, i.e. in the presence 
of a bias, the convective nonlinearity has been shown to cause a superdiffusive behaviour 
t2/j-law for the RMS-diSph.CemeIIt, in one dimension, in contrast to the usual diffusive tl/’- 
law [9]. The fluctuating Burgers equation is equivalent to the KPZ equation for the height 
variable h(x ,  t )  in a class of growing-interface models (the condsidered quantities are related 
by c(x. t )  = ah/%r) [ I l l .  There, the superdiffusive behaviour corresponds to anomalous 
surface roughening and the asymptotic scaling laws have been derived from renormalized 
perturbation theory [l I]. From dimensionality arguments (power counting), it is already 
clear that the diffusive nonlinearities (fourth term in (16)) are irrelevant. This is confirmed 
in the renormalization treatment below two dimensions. 

In the case without bias the diffusive nonlinearities (fourth term in (16)) become relevant 
below four dimensions. We have not considered their possible influence analytically. From 
the simulations there is now evidence for their importance on the space and time scales 
considered here. 

Sections 4 and 5 will show how well the results of the numerical simulations are 
described by the analytical results derived above. 

4. Diffusion without drift 

4.1. Collective diffusion 

In this subsection we investigate collective diffusion in the one-dimensional bosonic lattice 
gas in the case r-, = r,. Then the equilibrium state of constant overall density exists 
for the periodic boundary conditions which we use, but there appear fluctuations in the 
density of particles in finite regions of the system. These fluctuations decay according to 
Fick‘s law, and the corresponding diffusion coefficient is the one for collective or chemical 
diffusion. It is most directly studied by monitoring the decay of density profiles which are 
superimposed on the average density. This procedure was first implemented by one of the 
authors [S] (see [5] for a review). A slight extension of the original procedure as well as 
the details of our simulations are listed,below. 

In the simulations, we prepare the system with the initial condition 

S C ( ~ ,  0) = Ac(0) cos[k(l - (19) 

and choose Ac(0) = 0.1, i.e. always distinctly smaller than the average concentrations. The 
time dependence of the concentration profile k ( 1 ,  t )  is monitored and fitted by 

SC(1, t )  = AC(t )  COS[k(l - lahiit)]. (20) 

In the long-wavelength limit, the coefficient Ac(t)  of this Fourier component is a solution 
of the linearized diffusion equation 

Ac(t) = Ac(O)exp[-D(E)k’f] 

and hence we can determine the Coefficient of collective diffusion, D(E) 
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0 25 50 75 100 125 150 
time [MCS / p] 

Figure 2. Amplitudes of concentration profile in a semilogarithmic plot versus Monte Carlo 
steps per particle for the bosonic lattice gas in the absence of a bias. Full circles denote results 
of Monte Carlo simulations for t h e  different concentrations: E = 0.5, 1.0 and 2.0, respectively; 
the full curves represent fits with (21). 

The only extension compared to the original method is the shift parameter lshi* (in 
our calculations equal to i) chosen ‘so that the nodes of the immobilized wavy particle 
concentration profile (given by (20)) and the lattice sites to make incommensurable. By 
this step, the zeros of the denominator are located between the lattice sites and therefore 
improved ‘experimental’ statistics for Sc(l, t )  is achieved numerically. Also, the periodic 
boundary conditions are not affected by this approach; note that we~used a reasonably small 
wavevector, i.e. k = %/A = 0.3927, where A = 16, and the chains had 2”(= 32768) 
sites. 

Figure 2 shows the decay of the concentration profile for three typical equilibrium 
concentrations as a function of  time^ in a semilogarithmic plot. The long-time behaviour 
is well described by straight lines, except for some scattering of the data points for small 
amplitudes. The initial-time decay is slightly enhanced, but this is likely to be an artefact 
of the initial preparation. We also examined the wavelength dependence of the results (the 
rate of the exponential decay scales as kZ = (Zn/A)*), and the absence of nonlinear effects 
within the accuracy of the numerical simulations. The diffusion coefficients deduced from 
the slopes of figure 2 agree with the collectivediffusion coefficient 04) as given by (17), 
within a few per cent. Hence the simulations verify the validity of the linearized version of 
(16) for the diffusive decay of small deviations from the equilibrium concentrations. 

4.2. Centre-of mass diffusion 

In this subsection we examine numerically an asymptotic formula for the meat-square 
displacement of the centre of mass as a function of time. The starting point is a general 
asymptotic formula in the long-wave approximation 19, IO], which relates the centre-of-mass 
mean-square displacement with a time-dependent density-density correlation function 
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0 100 200 300 400 500 
time [MCS Ip] 

Figure 3. Scaled centre-of-mass mean-square displacement versus Monte Carlo steps per 
particle. Empty circles, sM, and full circles denote results of Monte Carlo simulations for three 
typical concenmtions: i = 0.5, 1.0. 2.0, respectively, Without bias. The full line represents the 
theory discussed in section 4.2. 

N 
The time-dependent centre-of-mass displacement is defined as X ( t )  = l/Np Axj@),  
where Axj( t ) ,  j = 1,. . . , N p .  is the displacement of the j th  particle at time t ,  and 
S(k ,  t )  = {8c(-k, O@c(k, t ) )  is the density-density correlation function with &(k, f )  the 
spatial Fourier transfom of a concentration fluctuation Sc(x ,  t ) .  When the linearized 
diffusion equation holds 

S ( k ,  t )  = S ( k ,  0) exp[-PD(@i] (23) 
and the equal-time density fluctuations S ( k ,  0) are easily related, in the grand-canonical 
ensemble, to the fluctuations of the particle number N p  in the bosonic lattice gas 

Using (23) and (24) we obtain finally the relation 

( [ X ( t ) l 2 ) N P  = 2(1 + E)D(E)t. (25) 

One may directly define a centre-of-mass diffusion coefficient by DCM = (1 + c)D(C). By 
virtue of (17) it is given by 

In f ip re  3 we present results of Monte Carlo simulations for three typical concentrations. 
As is seen, they agree quite well with the above theoretical considerations, again verifying 
(17). Moreover, we emphasize that these results show the absence of nonlinear effects, 
within the accuracy of the numerical simulations and within the time range studied. 

4.3. Tagged-particle dilfusion 

The diffusion of tagged particles in the one-dimensional model of a bosonic lattice gas 
with order preservation is interesting in several aspects. In the fermionic lattice gas with 
site exclusion, the mean-square displacement of tagged particles is characterized by an 
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asymptotic t”’ behaviour, instead of the usual proportionality with t. This subdiffusive 
behaviour is a consequence of the fact that the particles cannot pass each other on the 
chain. Here we have the same constraint and can expect a similar behaviour. 

A physical derivation of the t1I2 behaviour was given by Alexander and Pincus [12]. 
They pointed out that the fluctuations of the positions of tagged particles are driven by 
the density fluctuations of the particles, which decay by collective diffusion. In [12] 
the average mean-square displacement of a tagged particle has been related  to^ the time- 
dependent density-deusity correlation function. For the bosonic lattice gas (as well as for 
the fermionic lattice gas) the equal-time density fluctuations are easily calculated in the 
grand-canonical ensemble (cf section 4.2). The decay is governed, in the hydrodynamic 
limit, by the coefficient of collective diffusion as given by (17). Using these modifications 
in the derivation of Alexander and Pincus, one obtains for the mean-square displacement of 
a tagged particle 

(Note that the lattice constant has~been set to unity.) 
The mean-square displacement of tagged particles is easily estimated by simulations. 

One considers each particle as tagged and monitors their displacements. The results for 
three particle concentrations are shown in figure 4. One observes that the simulation data 
approach the theoretical curves in the long-time limit. As for the fermionic lattice gas cf 
[I31 the crossover to the asymptotic behaviour occurs earlier for larger concentrations. A 
fit with the data points to a power-law behaviour with an undetermined exponent and the 
prefactor confirms the validity of (27). Apart from its intrinsic interest, the results for the 
tagged-particle diffusion corroborate the validity of (17) for the coefficient of collective 
diffusion. 

.~ . 

0‘ I I I 
10 100 1000 

time [MCS Ip] 

Figure 4. Mean-squaredisplacement of the mcer p b c l e s  versus Monte Carlo steps per panicle 
in a double-logarithmic presentation. Full circles represent the results of Monte Carlo simulations 
for tiuee’typical Concentrations, without bias, and the full lines represent the theory discussed 
in section 4.3; 
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5. Diffusion in +e presence of drift 

5.1. Centre-of-mars velocity 

As a first step of this subsection we derive the equation of motion for the mean displacement 
of the centre-of-mass starting from (6) for the concentration c(l, t ) .  Multiplying both sides 
of this equation by 1 and summing over 1 we get as an intermediate step the exact equation 
for an infinite chain: 

with the mean centre-of-mass displacement (X(t)) = E, l[c(l, t) - c(l, O)]; this definition 
is equivalent to that introduced in section 4.2. 

Applying assumption (11) to the RHS of above equation and expanding it around E,  we 
obtain the final equation up to the second order in 6c(l, t )  in the form 

The second term in the braces is only a higher-order correction (of one per cent order) 
in our simulations, since we always keep ISc(l, t)l < E. Hence we have in the lowest 
approximation the following formula for the centre-of-mass drift velocity: 

We introduce the probability of jumps to the right as the parameter that characterizes the 
bias 

(31) 
r, 

p =  r, + r+ .  
Figure 5 allows us to examine relation (30) for three typical average concentrations at 

three different values of the bias. Again, the absence of nonlinear effects is clearly seen 

0 ZOO 400 600 800 1000 
time [MCS Ip ]  

Figure S. Scaled cenuedf-mass displacement versus Monte Carlo steps per particle for three 
values of the bias p = 0.7, 0.8 and 0.9. Open circles, stars and full circles represent the data 
obtained by the Monte Cmlo simulations for three typical concentrations. The full lines represent 
the theoretical results discussed in section 5.1. 
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within the accuracy of the numerical simulation and within the time range studied. Note that 
the centre-of-mass velocity has a different concentration dependence than the drift velocity 
which was introduced in the context of the Burgers equation (cf (18)). We will discuss the 
latter velocity in the following subsection and in the conclusion. 

5.2. Drift velocity 

Here we extend the method used in section 4.1 to directly verify (1 8). A solution of the linear 
part of (16) which represents a travelling wave is easily obtained in the long-wavelength 
s i t  

k ( 6 ,  t )  Ac(t)cos[kl - IJ(C)~] (32) 
where U(?) is the velocity which appears in (IS). The coefficient Ac(t)  is again given by 
the solution of the linearized diffusion equation, i%. by (21). In contrast to (19) and (20), 
we have set lsbift = 0 since the velocity already provides a time-dependent shift. The initial 
conditions are the same as in the case of no bias. The results of this approach are shown 
in figures 6 and 7. 

Figures 6(a)-(c) presenttypical snapshot pictures showing scaled profiles Sc(l, t ) /Ac( t )  
at three different times which travel to the right according to the external bias. The full 
circles represent data of the Monte Carlo simulation while the full curve represents the fit 
of these data by the weighted cosine, gcos[k(l - l ( t ) ) ] ,  where the amplitude g and the 
phase shift l ( t )  are free parameters. If the h e a r  version of (16) would be an exact diffusion 
equation of the bosonic lattice gas then the amplitude would be exactly g = 1, independently 
of time. Remember that the diffusive decay of the profile is taken into account in the linear 
approximation by the scaling with Ac(t) .  From figure 6 we see that a slight decrease of 
the amplitude of the order of a few per cent occurs, which probably is an artefact due to 
the initial preparation. 

The phase shift, I @ ) ,  is time-dependent and numerical values taken from the fit are 
presented in figure I after scaling with the factor (1 + Z)', for three typical concentrations 
and two values of the bias. As is seen, these numerical results a p e  with the theoretical 
prediction of (18) only up to about 10 Monte Carlo steps per particle (MCS/p); for longer 
times and, especially, for higher values of the bias clear deviations from the linear behaviour 
are seen. These data when properly evaluated could provide information of the influence of 
nonlinear corrections. We will follow a different (more tried) route to study their influence. 

5.3.. Centre-of-mass superdipsion 

In earlier papers 19,101 that dealt with the fermionic lattice gas, an asymptotic formula for 
the dispersion of the centre-of-mass displacement was derived analytically by employing, 
in the simplest approximation, a mode-coupling formalism, and also verified numerically 
by one of the authors [IO]. The reformulation of this derivation for the bosonic lattice gas, 
described by (16) with neglected diffusive nonlinearity (fourth term), is straightforward and 
gives~ ~ 

(33) 
In this formula we can clearly distinguish between the diffusion term which is linear 
in time and the nonlinear superdiffusive term. For, the linear term the~derivation yields 
DcM(?) = (1 + ?)D(?), i.e. (26) is equally valid in the equilibrium and in the stationary 
state. The superdiffusion coefficient is E ( p ,  5) = ( 9 / Z . J ; ? ) 2 / 3 D ~ ~ ( ? ) y ( p ,  with 

(([X(t)1')-  (x(t))'}Np %Z 2DCM(c)f + E ( p ,  ?)t4j3.  

y ( p ,  F) = [(Zp - l)%/(l + F)']'.~ 
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Figure 6. Snapshot picture of scaled deviation of concentration (Sc(1. r ) /Ac( t ) )  versus the x- 
coordinare for three momens of time: ( a )  f = 3 Mcslp, (b) f = 9 Mcstp and (e) f = 18 Mcstp. 
PT E = 1.0 and p = 0.9. The full circles represent the Monte Carlo data while the full c w e  is 
a fit to (32). 
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Figure 7. Scaled phase shih l(r), versus time for two values of the bias and &ee typical 
concentrations. Symbols, Monte Cxlo simulations; full lines, linear theory [(I + Ej2u(Z)r = 
( 2 P  - U t ] .  

In the case of no bias ( p  = i) the superdiffusion term vanishes: however, when bias is 
present the diffusive term is still visible on a shorter time scale: 

which is obtained from (33) by comparing the diffusion and the superdiffusion term. For 
our parameter values this criterion says that for a time range not larger than a few MCS/p, 
the diffusion term dominates strongly, while for larger times superdiffusion almost totally 
dominates diffusion. This is demonstrated in figure 8 where data are given for the short-time 
behaviour of the dispersion of the centre-of-mass displacement for typical concentrations 
and i+ii intermediate value of the bias. 

Figure 9 shows the dispersion of the centre-of-mass mean displacement for one particular 
value of the bias and concentration on ~a more extended time scale. One recognizes 
the systematic behaviour -t4/3, but also some regular oscillations around the systematic 
behaviour, which will be discussed in the following subsection. In table 1 we compare 
numerical and theoretical values of the superdiffusion coefficient for three values of p and 
a typical value of E. The agreement is within about 20%. This is somewhat larger but 
comparable to the deviation found for the fermionic lattice gas [9]. Part of the discrepancy 
might~be due to the fact that the numerical prefactor of E ( p ,  F) comes from an approximate 
solution of the integro-differential equation for the scaling function in [9]. On the other hand, 

Table 1. Comparison of theoretical and numerical values of the superdiffusion coefficient at 
E = 1.02. 

P (1 + E)rE(p. c) 

Simulation Theory 

0.69 0.256 0.203 
0.85 0.528 0.459 
1.0 0.627 0.739 

. ,  . 
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Flgnre 8. Typical initial behaviour of the scaled centre.af-mass mean-square displacement (with 
subtracted drift) versus Monte Carlo steps per particle in presence of a bias ( p  = 0.7). Open 
circles, stars and full circles are the Monte Carlo results for typical concentrations, and the 
broken line is the theoretical prediction for shorter times discussed in section 5. 
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Figure 9. Dispersion of cenue-of-mass displacement versus Monte &lo steps per particle. for 
the bias p = 0.65 and the concentration F = 2.0. Full circles represent the Monte Cario data, 
and the full curve is the fit to a t4I3 behaviour. The presence of oscillations is seen at larger 
times. 

the deviation changes sign when approaching the largest value of driving force ( p  = 1). 
This could be understood from the fact that the mode-coupling approximation applies for 
small coupling constants only. The crossover in amplitudes to the strong coupling limit 
has been explored in [14]. This could lead to a saturation in the amplitude. However, the 
strong coupling problem is still unsolved in finite dimensions (see e.g. [15]). 

One may introduce an effective exponent a ( p )  for the superdiffusive behaviour when 
the dispersion of the centre-of-mass displacement is fitted to a power-law behaviour - tu@) 
on an intermediate time scale. When the bias parameter is continuously increased from 
p = ~ +  to larger values, the effective exponent should change from a = 1 (normal diffusion) 
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Figure 10. The effeciive superdiffusion exponent CL versus bias p .  changing continwusly from 
(I = 1, for the case of no bias, toward a = :, in the presence of B bias. 

to 01 = z (superdiffusion). We have observed such a behaviour in our data, and figure IO 
shows the results of this analysis. 

5.4. Anomalous slow cluster dynamics 

Figure 9 exhibited some regular oscillations around the~systematic behaviour -t4I3, with 
non-increasing amplitude. In this subsection we argue that this, oscillatory behaviour 
is likely due to a slowing-down effect of the dynamics of clusters for one particular 
combination of the parameters p and 2. We call an accumulation of m =- 1 'particles 
at a site I and we consider a cluster of the particles at this site. If there is bias in the 
positive direction, there is drift of the particles in this direction. Clusters with particle 
numbers above the average density will systematically decay in both directions. We direct 
the attention to the decay of the cluster by processes in the opposite direction to the bias. 
That is, we require that the top particle of the cluster (cffigure 1) does not make a transition. 
The cluster may decay by transition of the particle occupying the bottom of the cluster to site 
I - 1, and the corresponding rate is 1/(1+ E)r,, where the factor 1/(1+ 5) represents the 
average probability of finding a vacancy at a given site (here at the bottom of the cluster). 
It may grow by wansitions from site I -  1. The growth rate is given by 5/(l+2)2r+, where 
the factor ?/(I + 2)2 represents $average probability of finding at least one particle at 
site 1 - 1, and having the jumping particle at the top of this cluster, cf (8). The dynamics 
of the cluster becomes particularly slow when growth and decay compensate each other on 
the average, or - 

(35) 

Introduction of the probability p of jumps in the positive direction leads to the special value 

(36) 

For instance, ps = i for ? = 1. We observed systemtic oscillations like the ones iii figure 9 
for combinations of p and 5 which are close to the value given by (36) and~au absence of 
such oscillations for combinations that are further away from this value. 

C 
-r.+ = r, . , .  

P S = G .  
1 + E  



938 R Kutner et a1 

5.5. Biased tagged-particle diffusion and drift velocity 

It is also interesting to study tagged-particle diffusion in the model in the presence of a 
bias. In the case of the fermionic lattice gas, tagged-particle diffusion becomes normal 
when a bias is present, i.e. the dispersion of the mean displacement of tagged particles 
increases linearly with time, for large times [16,17]. The same behaviour is observed for 
our model of a bosonic lattice gas. Figure 11 presents the scaled mean-square displacement 
(with subtracted drift) versus Monte Carlo steps per particle, for three values of the bias 
and at three typical concentrations. As is seen, the results of the simulations are quite well 
described by straight lines that have slopes given by the ZD,(?)(l +a, where the diffusion 
coefficient of tagged particles is 

i r+-r+ 
2 l + C  ’ 

&(C) - 

This expression requires justification. 

(37) 

0 100 200 300 400 500 
time [MCS Ip] 

Figure 11. Scaled mean-square displacement of tagged particles with subtracted drift versus 
Monte Cmlo steps per particle for the values of the bias p = 0.7, 0.8 and 0.9. Open circles, 
stars md full circles represent the Monte Carlo data for three typical concentrations. The full 
lines are the theoretical results discussed in section 5.5. 

Recently, mathematicians derived [16] exact formulae for the tagged-particle diffusion 
coefficient and the drift velocity in the site-exclusion (fermionic) lattice gas. Their formalism 
can readily be extended to the model of a bosonic lattice gas, as a consequence of the 
requirement of order preservation, since then the same constraint applies in both models. 
In the fermionic lattice gas the basic local quantity is the effective jump rate (1 - E)rj 
( j  =+, c) of a tagged particle to the right or left nearest-neighbour site, where the factor 
1 - E denotes the average probability of,finding a vacancy at a given site. In the case of 
the bosonic lattice gas this factor should be replaced by 1/(1 + Z), according to (8). Then 
the rate r+/(l + ?) represents the transition rate of a particle occupying the top of the 
local cluster to the nearest-neighbour site. A similar interpretation applies to the jump rate 
r+/(l + F) of a particle at the bottom of the local cluster to the left. 

It is a matter of straightforward extension to also adopt a one-dimensional ‘special 
vacancy’ formalism developed earlier [13,171 to derive the coefficient of tagged-particle 
diffusion and the mean drift velocity. We obtain the expression given in (37) for the tagged- 
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particle diffusion coefficient and the following expression for the drift velocity of tagged 
particles: 

The mean drift velocity of tagged particles agrees with the velocity that follows from the 
mean displacement of the centre of mass, cf (30).~ In fact, the definitions of the mean 
dispIacement of the centre of mass, and of the displacement of tagged particles, averaged 
over all particles, are completely equivalent. As already stated above, our Monte Carlo 
simulations verify the validity of (37) for the diffusion coefficient of tagged particles. 

6. Concluding remarks 

In this paper we have discussed different types of diffusion in the one-dimensional bosonic 
lattice gas with order preservation, with and without bias: 

collective (or chemical) diffusion, 
centre-of-mass diffusion, 
tagged-particle diffusion. 

We have studied linear and some aspects of nonlinear diffusion with non-trivial 
concentration-dependent diffusion coefficients and drift velocities. We observed both normal 
and anomalous diffusion in the model. In our studies, we 'experimentally' proved by Monte 
Carlo simulations that our basic hypothesis, i.e. relation (11) between P(I ,  t )  and c( l ,  t ) ,  is 
valid not only near the equilibrium or stationary state but even far from them. We were 
able to verify, for example, the concentration dependence of different diffusion coefficients, 
drift velocities and superdiffusion coefficient of centre-of-mass, dispersion. 

It is instructive to compare the results for the different diffusional behaviours of the 
bosonic lattice gas in one dimension with the corresponding ones of the fermionic lattice 
gas. This is done in table 2. Of course, the different drift velocities are zero when no bias 
is present. Also, the coefficient of tagged-particle diffusion vanishes in the absence of a 
bias since then the mean-square displacements show subdiffusive behaviour. 

The table demonstrates that the collective diffusion coefficient and the collective drift 
velocity are scaled by the factor 1/(1 +t) in comparison to the analogous quantities for the 
centre-of-mass and tagged-particle diffusion. 

Both models are completely equivalent only at c' = 0. At small but finite c' the models 
are already not equivalent. Expanding the factor 1/(1+ E )  and 1/(1 + E)z up to first order, 
we observe that the equivalence between both models is broken only for collective (or 

Table 2. Diffusion coefficients and drift velocities for the bosonic and fermionic lattice gases 
in the absence and presence of a bias. The different diffusion coefficients and velocities were 
defined in the main text. n e  sum of the transition rates r+ t r+ and the lattice constant has 
been set to unity. 

2D ~ D C M  2DtP U 0 UCM = Ut0 

No 1/(1 +a2 ]/(I tR 0 0 0 
bias 1 I - ?  0 0 0 
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chemical) diffusion without and with bias. Roughly speaking, this could be expected, since 
the possibility of multiple occupancy of sites for the bosonic lattice gas should modify just 
the collective diffusion. An additional reason for the broken equivalence is that there exists 
an extru symmetry for diffusion in the fermionic lattice gas (exhibited earlier [7, IO]) and 
not for diffusion in the bosonic one. 
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